US009325640B2

a2 United States Patent 10) Patent No.: US 9,325,640 B2
Lee et al. (45) Date of Patent: Apr. 26, 2016
(54) WIRELESS NETWORK DEVICE BUFFERS ;,852,282 g% ggg}? ilanlglf't al. .
A K alabi et al.
. . . 8,665,745 B2* 3/2014 Lundinetal. 370/252
(75) Inventors: ‘(I[‘;‘S‘)g g“‘hLee’SMouanlﬁr }’IC‘EJV;’)CA 2005/0169206 Al* 8/2005 Nozaki ..o HO4W 88/04
; Bo Han, Summit, ; 370/316
Sung-Ju Lee, Redwood City, CA (US) 2008/0091851 Al* 4/2008 Sierra 710/22
2011/0292901 Al* 12/2011 Pettersson et al. ... 370/329
: . . 2011/0310738 Al* 12/2011 Leeetal. 370/235
(73) Assignee: Hewlett-Packard Development 2012/0087396 Al* 4/2012 Nimbalkeretal. 375/219
Company, L.P., Houston, TX (US) 2013/0083654 Al* 4/2013 Leeetal. ... 370/230
2013/0254462 Al* 9/2013 Whyteccccoeen. HO041. 69/324
(*) Notice: Subject to any disclaimer, the term of this 711/103
patent is extended or adjusted under 35
U.S.C. 154(b) by 723 days. OTHER PUBLICATIONS
Appenzeller, Guido, et al., “Sizing Router Buffers”, Stanford HPNG
(21) Appl. No.: 13/560,685 Technical Report, 2004.
Dhamdhere, Amogh, et al., “Open Issues in Router Buffer Sizing, in
(22) Filed: Jul. 27, 2012 Computer” Communication Review, Jan. 2006.
Kellett, Christopher M., et al., “Sizing Internet Router Buffers, Active
(65) Prior Publication Data Queue Management, and the Lur’e Problem”, in Proc. of IEEE CDC,
2006.
US 2014/0032742 Al Jan. 30, 2014 Li, Tianji, et al., “Buffer Sizing for 802.11-based Networks”, IEEE/
ACM Transactions on Networking (TON), vo. 19 No. 1, Feb. 2011.
(51) Imt.Cl Malone, D., et al., “On Buffer Sizing for Voice in 802.11 WLANs”
HO4L 12/861 (2013.01) IEEE Communications Letters, vol. 10, No. 10, Oct. 2006.
GO6F 15/173 (2006.01) Pilosof, Saar, et al., “Understanding TCP fairness over Wireless
GO6F 13728 (2006,0]) LAN”, in Proc. of IEEE INFOCOM 2003.
(52) US.CL (Continued)
CPC e HO4L 49/90 (2013.01)
(58) Field of Classification Search Primary Examiner — David Lazaro
CPC GOG6F 3/16; GO6F 12/023; HO4W 52/02; Assistant Examiner — 7iYe
HO4W 88/04; HOAL 49/90 (74) Attorney, Agent, or Firm — Mannava & Kang
USPC ..o 709/224; 710/22; 370/428, 316
See application file for complete search history. (57) ABSTRACT
(56) References Cited A wireless network device includes operating system layer

U.S. PATENT DOCUMENTS

buffers used by an operating system and driver layer buffers
used by a wireless network interface driver in the device.
Memory stores a capacity bitmap managed by the wireless

6,175.900 B1* 12001 Forinetal ... 711/156 network interface driver. The capacity bitmap identifies a
7,215,641 Bl 5/2007 Bechtolsheim et al. . .
7415004 B2* 32008 TFaller 375/242 current capacity of each of the driver layer buffers and the
7474676 B2 1/2009 Taoetal capacity bitmap may be provided to the operating system.
7,593,417 B2* 9/2009 Wangetal. 370/428
7,636,368 B2 12/2009 Jang et al. 13 Claims, 4 Drawing Sheets
OS layer
110a 110b 110c 110d bL;f:%rs Kermal 101
O buff
[N N k ——— 1 sche:ulz:
I ! 4
: | | | | 102
| I I | *
| | I | i 103
| |] I I
_______ (i it S buor sizer/ driver buffer
1202 1200 1200 1204 |120e 120f 1209 120 capacity /" scheduler
(/S S I O A | VA WY I O VR | bitmap ——105
| : : : L manager \[—_‘—|106
I I I f 707
I I | I :\
Sl JI ______ JI ______ JI- _______ * crver layer driv (04 buffer sizer
| | i buffers 120 4™¢"
it st e b | .
| | ! AKH | | capacity
| | ' | bitmap
[T AR AR A _ 100
130 1306 130 & 1304 hardware
layer queues
130

frames travelling
through buffers for
transmission

wireless network
150

client 151

&Iient 152

US 9,325,640 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS
Stanojevic, Rade, et al., “Adaptive Tuning of Drop-Tail Buffers for
Reducing Queueing Delays”, IEEE Communications Letters, vol.
10, No. 7, Jul. 2006.
Vu-Brugier, G., “A Critique of Recently Proposed Buffer-Sizing
Strategies”, ACM Computer Communication Review, vol. 37. No. 1,
Jan. 2007.

Wischik, Damon, et al., “Part I: buffer sizes for core router”, ACM
Computer Communication Review, vol. 35, No. 3, Jul. 2005.
Selvam T., et al., A Frame Aggregation Scheduler for IEEE 802.11N,
MIT Campus of Anna University, on pp. 1-5, Jan. 29-31, 2010.
< http://comm.au-kbc.org/Docs/papers/A__Frame Aggregation
Scheduler for IEEE 802 1ln.pdf>.

* cited by examiner

US 9,325,640 B2

Sheet 1 of 4

Apr. 26,2016

U.S. Patent

N
FAI R B ol.o

uoISSILLISUER]
. \'@ oGl Joj steng ybnoayy
M‘ 0\“& LG L JUolo HIOM]BU SSajaliM Buijjones; sawely
ocl Z XN\
sonanb Jake) \ , A
atempley POEL AN/ qogt B0 L
601 [AN Y —
dewnq = | | = . - !
Ayoedeo |] | I || _ [] |
7y - A e e J
I _ I
siayn
1921S 19ynq 701 JSALIP mmw\m‘m_ hmw_ hw]]]
. Torm oo T--Tm— roTT T r——---- |
~ ! [_ | |
_ L0l |) N 1 | _ _ |
TR “ _ | _
_ S0l | T deung _ _ /n f M J
- Apedes —— 7| T R N Y U T
Ja|npayos \ yozel mom_._ ¢t mom__ pPoZL 202 _‘_ qoct eQZ|
Ja)ng IsAup
! \th_m lagng _ _ ____ L e o _
] ! _ ! _ ,
_ €0l ~ | | | _ |
P —~ | I I ,
_ Z0l | | | _ _ “
] ! |
._m_:nmsom\ \ “. . Y. Y Y |
184ng SO 101 joulay OLL .\I
s1egnqg POLL o011 qoli EQLL

Johe} g0 S

U.S. Patent Apr. 26,2016 Sheet 2 of 4 US 9,325,640 B2

200
Non-Volatile
Storage
Processor Device
202 208
a A
203
‘ v ' S
h J '
Y
Memory
204
1101]
Kernel/
; 1104]
Y Dnver/
Capacity” | —02]
— Processsing Bitma
l oS p
293 Cireultry os Layer | —H0 1
. Buffers
, {120]
Driver a
T Memory 222 Layer
130 Buffers
{
Hardware Layer N s
Queues Wireless Network Interface 221

FIG. 2

U.S. Patent

Apr. 26,2016 Sheet 3 of 4

¢
(a»]

US 9,325,640 B2

store frame in OS layer buffer

f301

l

determine destination

302

l

determine capacity of driver
layer buffer for destination

l

determine whether to send
frame to driver layer buffer
based on capacity

FIG. 3

U.S. Patent Apr. 26,2016 Sheet 4 of 4 US 9,325,640 B2

E-N
(=]
o

dequeue frame from driver |/~ 401
layer buffer

}

402

determine destination

405
{

set bit in capacity bitmap to
indicate capacity not
exceeded

capacity exceeded?

set bit in capacity bitmap to | 404
indicate capacity is exceeded

FIG. 4

US 9,325,640 B2

1
WIRELESS NETWORK DEVICE BUFFERS

BACKGROUND

Devices that send or receive data via a computer network
may use a buffer to store data waiting to be transmitted to a
destination via the network or to store received data waiting to
be processed. The devices may include wireless network
devices that send or receive data via a wireless network. The
size of the buffer can impact throughput. For example, if the
buffer size is too large, the queuing delay increases and hence
the end-to-end packet delay may become significant and
unacceptable for delay sensitive applications (e.g., voice). On
the other hand, if the buffer size is too small, packets are
dropped as the butfer gets full.

BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments may be better understood and their fea-
tures made apparent by referencing the accompanying draw-
ings. The drawings illustrate examples of the embodiments
described herein.

FIG. 1 illustrates a wireless network device;

FIG. 2 illustrates a hardware platform;

FIG. 3 illustrates a method for enqueuing data in a driver
layer buffer; and

FIG. 4 illustrates a method for managing a capacity bitmap.

DETAILED DESCRIPTION

For simplicity and illustrative purposes, the principles of
the embodiments are described by referring mainly to
examples thereof. In the following description details are set
forth in order to provide a thorough understanding of the
embodiments. It is apparent that the embodiments may be
practiced without limitation to all the specific details. Also,
the embodiments may be used together in various combina-
tions.

According to an embodiment, a wireless network device
that uses 802.11 or another wireless network protocol to
communicate over a wireless network includes multiple lay-
ers of buffers. The multiple layers of buffers may include
operating system (OS) layer buffers, driver layer buffers and
hardware layer queues. The OS layer buffers store packets for
the OS. For example, the OS layer buffers are used by a kernel
in the OS to send and receive packets. The driver layer buffers
are used by a wireless network interface driver. The wireless
network interface driver may operate at the media access
control (MAC) layer and controls the circuitry of a wireless
network interface and allows the OS to interact with the
wireless network interface to send and receive packets in the
wireless network. The driver layer buffers store packets to be
communicated between the OS and the wireless network
interface. The hardware layer queues may comprise queues in
the wireless network interface. Examples of the wireless net-
work interface may be a radio chipset in a wireless access
point (WAP) or a wireless router or a wireless network inter-
face controller (WNIC) in a personal computer. The wireless
network interface may comprise hardware to send or receive
packets in the wireless network according to a wireless net-
work protocol.

The embodiments may be used in a 802.11n network.
According to an embodiment, for the driver layer buffers, the
size of the buffers may be determined based on frame aggre-
gation and link characteristics. This helps minimize MAC
queuing delays without hurting the performance of 802.11n

25

30

40

45

2

frame aggregation, and thus can improve transmission con-
trol protocol (TCP) throughput.

According to an embodiment, for the OS layer buffers, a
wireless destination-aware queuing scheme is implemented,
which can improve TCP throughput. For example, a capacity
bitmap is maintained that identifies the queue status (e.g.,
how full each buffer is) of buffers in the driver layer. The
capacity bitmap may identify each buffer in the driver layer
by MAC address associated with a destination. The capacity
bitmap may be maintained by the wireless network interface
driver and is exposed to the kernel so the kernel can determine
which buffers in the driver layer are full. For example, the
kernel may hash the MAC address of a frame to be enqueued
to the driver layer to determine the current capacity of the
driver layer buffer corresponding to the MAC. Enqueue
means to place data in a buffer and dequeue means to remove
data from a buffer. If the driver layer buffer is full, the kernel
may hold or drop the frame and enqueue another frame for a
different driver layer buffer that is not full. The capacity
bitmap comprises bits identifying the capacity of the driver
layer buffers. In one example, the bitmap comprises an index
of bits indicating MAC address hash value and capacity for
each driver layer buffer associated with the MAC address.

FIG. 1 illustrates buffers in a wireless network device 100.
The buffers include OS layer buffers 110, driver layer buffers
120 and hardware layer queues 130. A wireless network
device is any device, such as a WAP, router, end user device,
that uses 802.11 or another wireless network protocol to
communicate over a wireless network, such as wireless net-
work 150. In one example, the wireless network device 100 is
a WAP connected to clients, such as clients 151 and 152. A
client is anetwork device in a wireless network that associates
with a WAP to get connectivity, for example, to and from the
Internet, and to further communicate with other clients via the
wireless network. For example, the clients 151 and 152 may
comprise end user devices, such as mobile phones, laptops,
tablets, or other types of devices. A client may rely on one
WARP at any given time for all communications in the wireless
network. For example, the clients 151 and 152 rely on the
wireless network device 100, assuming it is a WAP, for com-
munications in the wireless network 150. The wireless net-
work device 100 sends and receives frames to and from the
clients 151 and 152 via the wireless network 150. The frames
may comprise layer 2 communications using MAC
addresses.

The OS layer buffers 110 are used by akernel 101 in an OS
for the network device 100 to send and receive packets. In one
example the OS layer buffers 110 are queuing discipline
(qdisc) butfers for LINUX but the bufters 110 may be used for
other types of OS. The driver layer buffers 120 are used by a
wireless network interface driver 104 that may operate at the
MAC layer to send and receive packets through a wireless
network interface of the network device 100. The driver layer
buffers 120 store frames to be communicated between the OS
and the wireless network interface. The driver layer buffers
may be TID (Traffic Identifier) buffers. TID is a number used
by 802.11 to provide differentiated QoS for each flow or
traffic class. The hardware layer queues 130 may comprise
queues in the wireless network interface that store received
frames or frames to be sent to destinations via the wireless
network 150.

In one example, buffers are provided for different traffic
classes. For example, the OS layer buffers 110a-d store data
for different traffic classes. For example, OS buffer 110a
stores frames for a first class, OS buffer 1105 stores frames for
a second class and so on. Similarly, the driver layer buffers
120 and the hardware layer queues 130 store frames for

US 9,325,640 B2

3

different traffic classes. For example, driver layer buffers
120a and 1205 store frames for the first class, driver layer
buffers 120c and 1204 store frames for the second class and so
on. Similarly, hardware layer queue 130a stores frames for
the first class, hardware layer queue 1305 stores frames for
the second class and so on. Examples of different traffic
classes include BK (background), BE (best effort), VI (video)
and VO (voice). Different queuing policies may be applied to
different classes because the traffic in different classes may
have different requirements. For example, VO may have
latency requirements of less than 10 ms but background may
not have any latency requirements so the queuing policy may
allow for faster transmission of VO frames. More or less than
four classes may be used.

The driver layer buffers 120 may include a buffer for each
destination serviced by the network device 100. For example,
if the network device 100 is a WAP, the clients 151 and 152 are
destinations in the WAP’s cell. The driver layer bufters 120
include buffers for each of clients 151 and 152. For example,
driver layer buffers 120a, 120c, 120e¢ and 120g store frames
for client 151 and are associated with the MAC address of
client 151. Driver layer buffers 1205, 1204, 120f and 120/
store frames for client 152 and are associated with the MAC
address of client 152. Also, driver layer buffers 120a-b may
be associated with a first traffic class, driver layers 120c¢-d are
associated with a second traffic class and so on. There may be
more or less than two clients. In certain instances, frames for
a destination or a class may be put into a buffer that is not for
the particular destination or class for the frame.

The kernel 101 and driver 104 may include modules and
perform functions other than described herein. The functions
performed by the kernel 101 and driver 104 that are described
herein are related to the buffers shown in FIG. 1.

The kernel 101 may include an OS buffer scheduler 102
and a buffer sizer 103. If the kernel 101 needs to send data to
a destination, the kernel 101 enqueues frames including the
data in an OS layer buffer which may correspond to the traffic
class. The OS buffer scheduler 102 attempts to send frames
from the OS layer buffer to the driver layer buffer for the
destination. The OS buffer scheduler 102 applies a queuing
policy, such as first-in-first-out or another policy, to send
frames to the corresponding driver layer buffer.

The OS buffer scheduler 102 also uses a capacity bitmap
109 to determine the current capacity of a driver layer buffer
before sending a frame to the driver layer buffer. If the driver
layer buffer is full, the OS buffer scheduler 102 does not send
the frame to the driver layer buffer and then may attempt to
send another frame to another driver layer buffer that is not
full. If the driver layer buffer is not full, the OS buffer sched-
uler 102 sends the frame to the driver layer buffer. The driver
104 exposes the capacity bitmap 109 to the kernel 101 so the
OS buffer scheduler 102 can determine the current capacity of
each of the driver layer buffers 120. The capacity bitmap 109
may use the MAC addresses of the destinations, such as
clients 151 and 152, to determine the capacities of the driver
layer buffers 120, as is further described below.

The buffer sizer 103 determines a size of the OS layer
buffers 110. In one example, a total size of the OS layer
buffers 110 is based on target delay and measured bandwidth.
The buffers and queues shown in FIG. 1 may comprise
memory to temporarily hold data while it is moved from one
place to another. The OS layer buffers 110 may share a
memory region. In another example, each of the OS layer
buffers 110 is dynamically sized per link based on target delay
D (ms) and measured bandwidth N, where N is the number of
ACKed frames per millisecond (ms). For example, buffer size
S=D*N. If the OS layer buffers 110 cannot determine the

20

25

35

40

45

55

4

number of MAC ACKed frames, then N can be set to the
number of successfully dequeued (compared to ‘dropped’)
frames instead of the number of ACKed frames. Also, in one
example, the OS layer buffers 110 may be per destination
instead of per traffic class so it is easier to adjust buffer size
based on link characteristics.

The wireless network interface driver 104 may include a
driver buffer scheduler 105, a capacity bitmap manager 106
and a buffer sizer 107. The driver buffer scheduler 105
attempts to send frames from the driver layer buffers 120 to
the hardware layer queues 130 for transmission to the desti-
nations. The driver buffer scheduler 105 applies a predeter-
mined queuing policy to send frames to the hardware layer
queues 130. Different polices may be applied for different
traffic classes. Also, the driver buffer scheduler 105 sends
frames for a particular traffic class to the hardware layer
queue storing frames for the class.

The driver buffer scheduler 105 may also perform frame
aggregation. For example, 802.11 n allows for frame aggre-
gation, which includes sending two or more frames in one
transmission. Different conditions may terminate frame
aggregation. Examples of conditions to terminate frame
aggregation include Block ACK window close, reaching a
frame limit, reaching a byte limit, and no more frames in the
driver layer buffer to aggregate. The limit on the number of
bytes reflects a current link bandwidth, as it may be calculated
based on the current PHY bit rate selected by a rate control
function. Driver layer buffer size may be determined based on
the byte limit as described below.

The buffer sizer 107 determines a size of the driver layer
buffers 120. In one example, a total size of the driver layer
buffers 120 is based on target delay and measured bandwidth.
Each of the driver layer buffers 120 may be dynamically
sized. For example, buffer size S=D*N, such as described
above.

To dynamically size each of the driver layer buffers, the
buffer sizer 107 may dynamically set buffer size limits for
each driver layer buffer based on frame aggregation and wire-
less link characteristics. For example, as described above, a
condition for terminating frame aggregation is a byte limit for
aframe. The limit on the number of bytes may reflect a current
link bandwidth if it is based on bandwidth. The individual
buffer size may be calculated based on the byte limit. For
example, suppose the frame aggregation byte limit is the
number of bytes in 20 frames, the buffer size limit may be set
to 2%20=40 frames. Setting the buffer size limit at twice the
frame aggregation byte limit is one example of a buffer size.
Smaller or larger sizes may be used. If a byte limit is set for
each driver layer buffer, it can minimize a situation whereby
one buffer hogs the memory region assigned to all the driver
layer buffers 120 that can cause frames for another buffer to
be dropped for lack of bufter space. Also, a buffer size limit of
each driver layer buffer may be based on a number of bytes in
the last frame aggregation. In another example, the total per-
destination buffer sizes, which may include OS layer buffers
110 and driver layer buffers 120, is D*N. Allowing both the
OS layer and driver layer buffers to dynamically size and
control their total (per-destination) sizes to be D*N can be
difficult. In one example, the driver layer buffer size may be a
constant K. The constant K, for example, is just large enough
to form one aggregation frame and to control the OS layer
buffer to be D*N-K.

The capacity bitmap manager 106 manages the capacity
bitmap 109 and exposes the capacity bitmap 109 to the kernel
101. The capacity bitmap 109 includes an identifier for each
driver layer buffer and an indication of current capacity of
each driver layer buffer. A simplistic example of some infor-

US 9,325,640 B2

5

mation that may be provided in the capacity bitmap 109 is
shown in table A below. The MAC address associated with a
driver layer buffer is hashed to create an identifier for the
buffer, which is included in the capacity bitmap 109. Also, the
current capacity of the buffer is determined. In one example,
if the current capacity is less than the buffer limit, then a bit
representing the capacity for the buffer is set to 0, such as
shown in row 1 in table A. Otherwise the bit is set to 1, such
as shown in row 2 in table A.

TABLE A
Hash of MAC Address Capacity at Limit (0 = no, 1 = yes)
01234F7TAXXXXX 0
999934FTAXXXXX 1

The capacity bitmap manager 106 periodically determines
the capacity of each driver layer buffer 120 and sets the
indication of the capacity in the capacity bitmap 109. The
capacity bitmap manager 106 also exposes the capacity bit-
map 109 to the kernel 101 so the kernel can read the capacity
bitmap 109 to determine whether to put frames in a driver
layer buffer. Exposing the capacity bitmap 109 may include
storing the capacity bitmap 109 in a memory location that is
accessible by the kernel 101 or otherwise providing the
capacity bitmap 109 to the kernel 101.

FIG. 2 illustrates a hardware platform 200 that may be used
by the wireless network device 100. The hardware platform
200 may be a platform for a WAP or another type of wireless
network device. The components shown in the hardware plat-
form 200 may be used in different types of network devices
but the different types of network devices may include differ-
ent components that are not shown. The hardware platform
200 includes one or more processors or processing circuitry
(e.g., application-specific integrated circuit) represented by
processor 202, providing an execution platform for executing
machine readable instructions including code. The processor
202 may process frames according to executed machine read-
able instructions. Commands and data from the processor 202
are communicated over a communication bus 203. The hard-
ware platform 200 also includes non-transitory computer
readable storage mediums including a memory 204, such as a
Random Access Memory (RAM), where machine readable
instructions and data used by the machine readable instruc-
tions are resident during runtime, and a non-volatile storage
device 208. The data storage 208 may include a nonvolatile
data storage device where a copy of the machine readable
instructions and data are stored.

The memory 204 may store modules that are comprised of
machine readable instructions executable by the processor
202 at runtime. The kernel 101 and the driver 104 shown in
FIG. 1 may be stored in the memory 204 at runtime. Also,
portions of the memory 204 may be used for the OS layer
buffers 110 and the driver layer buffers 120 shown in FIG. 1.
The capacity bitmap 109 may also be stored in the memory
204.

The hardware platform 200 includes a wireless network
interface 221 for communicating in a wireless network, such
as the wireless network 150 shown in FIG. 1. The wireless
network interface 221 may be a radio in a WAP. The wireless
network interface 221 may be used for transmissions between
the clients 151 and 152 and the wireless network device 100
in the wireless network 150 shown in FIG. 1. The wireless
network interface 221 may include memory 222 and process-
ing circuitry 223. The memory 222 and processing circuitry

10

15

20

40

45

50

6

223 may be provided in a chipset. The hardware layer queues
130 shown in FIG. 1 may use portions of the memory 222.

FIG. 3 shows an example of a method 300 for enqueuing
data in a driver layer buffer. The methods 300 and 400,
described below, are described with respect to the network
device 100 shown in FIG. 1 by way of example. For example,
the method 300 may be performed by a WAP or another type
of wireless network device. The methods may be performed
by other devices.

At 301, a frame is stored in an operating system layer
buffer. For example, the OS stores data for a frame in one of
the operating system layer buffers 110 that corresponds to the
traffic class for the data.

At 302, a destination for the frame is determined. For
example, the OS buffer scheduler 102 determines a MAC
address of the destination, such as the MAC address of the
client 151 if it is the destination.

At 303, a capacity for a driver layer buffer for the destina-
tion is determined from a capacity bitmap. For example, the
OS buffer scheduler 102 hashes the MAC address to identify
bits representing a corresponding capacity for the MAC
address in the capacity bitmap 109. Each of the driver layer
buffers 120 may store frames for a particular destination
and/or for a particular traffic class.

At 304, a determination is made as to whether to send the
frame from the OS layer buffer to the driver layer buffer for
the destination based on the determined capacity. For
example, each driver layer buffer may have a byte limit,
which may be adaptively set based on bandwidth or other link
characteristics. If the driver layer buffer capacity exceeded a
limit, then the frame may be held or dropped, and the OS
buffer scheduler 102 attempts to send another frame. If the
driver layer buffer capacity does not exceed the limit, then the
frame is sent to the driver layer buffer.

FIG. 4illustrates an example of a method 400 for managing
a capacity bitmap, such as the capacity bitmap 109.

At 401, a frame is dequeued from a driver layer buffer. For
example, a frame is sent from one of the driver layer buffers
120 to one of the hardware layer queues 130 storing frames
for the same traffic class as the driver layer buffer.

At 402, a destination associated with the driver layer buffer
is determined. For example, each of the driver layer buffers
120 may be associated with a particular one of the clients 151
and 152. The capacity bitmap manager 106 determines the
MAC address of the destination associated with the driver
layer buffer. The MAC address may be stored in memory.

At 403, a determination is made as to whether the capacity
of the driver layer buffer exceeded a limit based on informa-
tion in the capacity bitmap 109. For example, each driver
layer buffer may have a byte limit, which may be adaptively
set based on bandwidth or other link characteristics. If the
number of bytes in the buffer exceeds the limit, the capacity
bitmap manager 106 sets a bit in the capacity bitmap 109 to
indicate that the limit is exceeded at 404. The bit may already
indicate that the capacity is exceeded, and in this case the bit
is left unchanged. If the capacity is not exceeded, the capacity
bitmap manager 106 sets a bit in the capacity bitmap 109 to
indicate that the limit is not exceeded at 405. The bit may
already indicate that the capacity is not exceeded, and in this
case the bit is left unchanged.

While the embodiments have been described with refer-
ence to examples, various modifications to the described
embodiments may be made without departing from the scope
of the embodiments.

US 9,325,640 B2

7

What is claimed is:

1. A wireless network device comprising:

operating system (OS) layer buffers used by an OS;

driver layer buffers used by a wireless network interface

driver; and

memory storing a capacity bitmap managed by a capacity

bitmap manager of the wireless network interface driver,
wherein the capacity bitmap manager exposes the
capacity bitmap to the OS, determines a current capacity
of each of the driver layer buffers, and sets an indication
of'the current capacity of each of the driver layer buffers
in the capacity bitmap, wherein a kernel in the OS is to
determine a current capacity of a driver layer buffer of
the driver layer buffers from the capacity bitmap respon-
sive to a media access control (MAC) address of a frame
to be enqueued to the driver layer buffer, and ifthe driver
layer buffer is full, set a bit in the capacity bitmap to
indicate the driver layer buffer is full, and hold or drop
the frame and enqueue another frame to be enqueued for
a different driver layer buffer of the driver layer buffers
that is not full.

2. The wireless network device of claim 1, wherein the
driver layer buffers comprise a buffer for each of a plurality of
clients receiving frames from the network device over a wire-
less network, and each buffer is identified based on a MAC
address of a corresponding client.

3. The wireless network device of claim 2, wherein the
capacity bitmap identifies a capacity of each driver layer
buffer based on the MAC address for the client associated
with the buffer.

4. The wireless network device of claim 1, wherein a size of
each of the driver layer buffers is based on target delay and
measured bandwidth.

5. The wireless network device of claim 1, wherein a buffer
size limit of each driver layer buffer is based on a number of
bytes for a last frame aggregation.

6. The wireless network device of claim 1, wherein a buffer
size limit of each driver layer buffer is based on a byte limit for
frame aggregation.

7. The wireless network device of claim 1, wherein a total
size of the OS layer buffers and/or the driver layer buffers is
based on target delay and measured bandwidth.

8. The network device of claim 1, comprising:

awireless network interface including hardware queues for

a plurality of traffic classes and the wireless network
interface driver is to send frames from the driver layer
buffers to the hardware queues for transmission in the
wireless network.

9. The network device of claim 1, wherein the wireless
network device comprises a wireless access point.

10. A method for enqueuing data in a driver layer buffer, the
method comprising:

storing a frame in an operating system (OS) layer buffer

used by a kernel;

determining a destination for the frame;

determining a current capacity of each of a plurality of

driver layer buffers by a capacity bitmap manager;

5

30

35

40

45

50

8

setting an indication of the current capacity of each driver

layer buffer in a capacity bitmap;

determining, by a processor, a capacity for a driver layer

buffer for the destination from the capacity bitmap; and
determining whether to send the frame from the OS layer
buffer to the driver layer buffer for the destination based
on the determined capacity, wherein the kernel is to
determine a current capacity of a driver layer buffer of
the plurality of driver layer buffers from the capacity
bitmap responsive to a media access control (MAC)
address of a frame to be enqueued to the driver layer
buffer, and if the driver layer buffer is full, set a bit in the
capacity bitmap to indicate the driver layer buffer is full,
and hold or drop the frame and enqueue another frame to
be enqueued for a different driver layer buffer of the
plurality of driver layer buffers that is not full.

11. The method of claim 10, where the determining of the
destination comprises determining a MAC address of the
destination and the capacity is determined from the capacity
bitmap based on the MAC address of the destination.

12. A method of managing a capacity bitmap indicating a
capacity of each of a plurality of driver layer buffers, wherein
each driver layer buffer is associated with a different destina-
tion, the method comprising:

storing a frame in an operating system (OS) layer buffer

used by a kernel;

determining a current capacity of each of the plurality of

driver layer buffers by a capacity bitmap manager;
setting an indication of the current capacity of each driver
layer buffer in the capacity bitmap;

dequeuing a frame from a driver layer buffer;

determining the destination associated with the driver layer

buffer;

determining, by a processor, whether a capacity of the

driver layer buffer exceeds a limit;

if the capacity is exceeded, setting a bit in the capacity

bitmap associated with the destination to indicate the

capacity of the buffer is exceeded; and

if the capacity is not exceeded, setting the bit in the
capacity bitmap associated with the destination to
indicate the capacity of the buffer is not exceeded,
wherein the kernel is to determine a current capacity
of a driver layer buffer of the plurality of driver layer
buffers from the capacity bitmap responsive to a
media access control (MAC) address of a frame to be
enqueued to the driver layer buffer, and if the driver
layer buffer is full, set a bit in the capacity bitmap to
indicate the driver layer buffer is full, and hold or drop
the frame and enqueue another frame to be enqueued
for a different driver layer buffer of the plurality of
driver layer buffers that is not full.

13. The method of claim 12, where the determining of the
destination comprises determining a MAC address of the
destination, and the bit to be set in the capacity bitmap is
determined from the MAC address of the destination.

#* #* #* #* #*

